Initial Commit
This commit is contained in:
35
#Image Recognition Testing.py
Normal file
35
#Image Recognition Testing.py
Normal file
@@ -0,0 +1,35 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
import pyautogui as pag
|
||||
|
||||
##Inventory Count
|
||||
|
||||
# Take a screenshot and store it in a numpy array
|
||||
screenshot = np.array(pag.screenshot(region = (0, 1079, 1920, 1080)))
|
||||
|
||||
screenshot = cv2.cvtColor(screenshot, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
# Load the image to be searched for in grayscale
|
||||
image_to_search = cv2.imread('Images/shrimp.png', 0)
|
||||
|
||||
# Get the dimensions of the image to be searched for
|
||||
h, w = image_to_search.shape[::-1]
|
||||
|
||||
# Use cv2.matchTemplate() to find the template image within the screenshot
|
||||
result = cv2.matchTemplate(screenshot, image_to_search, cv2.TM_CCOEFF_NORMED)
|
||||
|
||||
# Set a threshold value to count only those template images that have a high enough correlation
|
||||
threshold = 0.9
|
||||
counter = 0
|
||||
|
||||
loc = np.where(result >= threshold)
|
||||
for pt in zip(*loc[::-1]):
|
||||
cv2.rectangle(screenshot, pt, (pt[0] + w, pt[1] + h), (0, 0, 255), 2)
|
||||
counter += 1
|
||||
|
||||
print(counter)
|
||||
|
||||
if counter == 27:
|
||||
print('Inventory full, time to drop')
|
||||
else:
|
||||
print('Inventory not full, keep fishing')
|
||||
Reference in New Issue
Block a user