Initial Commit
54
##More Basic testing for fishing.py
Normal file
@@ -0,0 +1,54 @@
|
||||
##More Basic testing for fishing
|
||||
import pyautogui as pag
|
||||
from random import randint, uniform
|
||||
import cv2
|
||||
import numpy
|
||||
import math
|
||||
import time
|
||||
import sys
|
||||
|
||||
class FishBot(object):
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def random_coordinate(self, location):
|
||||
#Moves cursor to random locaction still above the object to be clicked
|
||||
x = randint(location[0], location[0]+location[2])
|
||||
y = randint(location[1], location[1]+location[3])
|
||||
time = self.travel_time(x, y)
|
||||
|
||||
return pag.moveTo(x, y, time)
|
||||
|
||||
|
||||
def fishLoop(self):
|
||||
#check if inventory is full
|
||||
pag.screenshot('Images/shrimp.png', region=(1575, 1689, 305, 411))
|
||||
screen = cv2.imread('Images/shrimp.png')
|
||||
template = cv2.imread('Images/fullinv.png')
|
||||
res = cv2.matchTemplate(screen, template, cv2.TM_CCOEFF_NORMED)
|
||||
threshold = .80
|
||||
loc = numpy.where(res >= threshold)
|
||||
if len(loc[0]) > 0:
|
||||
invResult = True
|
||||
|
||||
else:
|
||||
invResult = False
|
||||
#Move to Random Coordinate where shrimps are
|
||||
##need to add some variance, misses clicks, doesn't move in a
|
||||
###straight line too fast
|
||||
#Shrimp location
|
||||
location1 = (580, 1954, 60, 60)
|
||||
|
||||
#Now add a little variance to the x and y coordinates
|
||||
##The location is in a tuple, these are immutable so it must be converted into a list to be changed
|
||||
###Then converted back
|
||||
locationList = list(location1)
|
||||
modifiedx = randint(0,35)
|
||||
modifiedy = randint(0,35)
|
||||
locationList[0] = locationList[0] + modifiedx
|
||||
print (locationList)
|
||||
locationList[1] = locationList[1] + modifiedy
|
||||
modifiedLocation = tuple(locationList)
|
||||
pag.moveTo(modifiedLocation, 2)
|
||||
pag.click()
|
||||
self.random_wait(0.05, 0.1)
|
||||
35
#Image Recognition Testing.py
Normal file
@@ -0,0 +1,35 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
import pyautogui as pag
|
||||
|
||||
##Inventory Count
|
||||
|
||||
# Take a screenshot and store it in a numpy array
|
||||
screenshot = np.array(pag.screenshot(region = (0, 1079, 1920, 1080)))
|
||||
|
||||
screenshot = cv2.cvtColor(screenshot, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
# Load the image to be searched for in grayscale
|
||||
image_to_search = cv2.imread('Images/shrimp.png', 0)
|
||||
|
||||
# Get the dimensions of the image to be searched for
|
||||
h, w = image_to_search.shape[::-1]
|
||||
|
||||
# Use cv2.matchTemplate() to find the template image within the screenshot
|
||||
result = cv2.matchTemplate(screenshot, image_to_search, cv2.TM_CCOEFF_NORMED)
|
||||
|
||||
# Set a threshold value to count only those template images that have a high enough correlation
|
||||
threshold = 0.9
|
||||
counter = 0
|
||||
|
||||
loc = np.where(result >= threshold)
|
||||
for pt in zip(*loc[::-1]):
|
||||
cv2.rectangle(screenshot, pt, (pt[0] + w, pt[1] + h), (0, 0, 255), 2)
|
||||
counter += 1
|
||||
|
||||
print(counter)
|
||||
|
||||
if counter == 27:
|
||||
print('Inventory full, time to drop')
|
||||
else:
|
||||
print('Inventory not full, keep fishing')
|
||||
BIN
.screenshot2023-0407_13-49-35-134001.png
Normal file
|
After Width: | Height: | Size: 4.5 MiB |
BIN
.screenshot2023-0407_13-53-50-554837.png
Normal file
|
After Width: | Height: | Size: 5.9 MiB |
BIN
.screenshot2023-0407_20-17-36-473071.png
Normal file
|
After Width: | Height: | Size: 4.8 MiB |
BIN
.screenshot2023-0413_16-20-18-185931.png
Normal file
|
After Width: | Height: | Size: 4.0 MiB |
BIN
.screenshot2023-0413_20-36-51-424621.png
Normal file
|
After Width: | Height: | Size: 3.4 MiB |
BIN
.screenshot2023-0413_20-36-56-591189.png
Normal file
|
After Width: | Height: | Size: 3.3 MiB |
BIN
Images/fishing.png
Normal file
|
After Width: | Height: | Size: 2.7 KiB |
BIN
Images/fullinv.png
Normal file
|
After Width: | Height: | Size: 651 B |
BIN
Images/invscreen.png
Normal file
|
After Width: | Height: | Size: 58 KiB |
BIN
Images/notfishing.png
Normal file
|
After Width: | Height: | Size: 4.6 KiB |
BIN
Images/shrimp.png
Normal file
|
After Width: | Height: | Size: 3.5 KiB |
BIN
Images/test.png
Normal file
|
After Width: | Height: | Size: 2.1 MiB |
32
Testing file.py
Normal file
@@ -0,0 +1,32 @@
|
||||
##Testing file
|
||||
import pyautogui as pag
|
||||
from random import randint, uniform
|
||||
import cv2
|
||||
import numpy
|
||||
import math
|
||||
import time
|
||||
import sys
|
||||
|
||||
#Build a list of acceptable x and y locations and pass them to the moveto function
|
||||
##how to do this without having to pass a sequence, because for some reason the library does not like them
|
||||
|
||||
location1x = 580
|
||||
location1y = 1954
|
||||
|
||||
#Now add a little variance to the x and y coordinates
|
||||
modifiedx = randint(0,35) + location1x
|
||||
modifiedy = randint(0,35) + location1y
|
||||
|
||||
#Also add the chance to misclick
|
||||
misclick = randint(0,10)
|
||||
|
||||
#20% Chance to misclick
|
||||
if misclick <= 2:
|
||||
location1x = location1x + 50
|
||||
location1y = location1y + 50
|
||||
print('Misclick calculated')
|
||||
else:
|
||||
print('Clicking Normally')
|
||||
|
||||
pag.moveTo(location1x, location1y, 0.70)
|
||||
pag.click()
|
||||
83
fishing.py
Normal file
@@ -0,0 +1,83 @@
|
||||
import pyautogui as pag
|
||||
from random import randint, uniform
|
||||
import cv2
|
||||
import numpy as np
|
||||
import math
|
||||
import time
|
||||
import sys
|
||||
|
||||
#For Fishing
|
||||
##https://zaxrosenberg.com/how-to-write-a-runescape-autoclicker-with-python-part-ii/
|
||||
|
||||
def inventoryCount():
|
||||
|
||||
##Inventory Count
|
||||
|
||||
# Take a screenshot and store it in a numpy array
|
||||
screenshot = np.array(pag.screenshot(region = (0, 1079, 1920, 1080)))
|
||||
|
||||
screenshot = cv2.cvtColor(screenshot, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
# Load the image to be searched for in grayscale
|
||||
image_to_search = cv2.imread('Images/shrimp.png', 0)
|
||||
|
||||
# Get the dimensions of the image to be searched for
|
||||
h, w = image_to_search.shape[::-1]
|
||||
|
||||
# Use cv2.matchTemplate() to find the template image within the screenshot
|
||||
result = cv2.matchTemplate(screenshot, image_to_search, cv2.TM_CCOEFF_NORMED)
|
||||
|
||||
# Set a threshold value to count only those template images that have a high enough correlation
|
||||
threshold = 0.9
|
||||
counter = 0
|
||||
|
||||
loc = np.where(result >= threshold)
|
||||
for pt in zip(*loc[::-1]):
|
||||
cv2.rectangle(screenshot, pt, (pt[0] + w, pt[1] + h), (0, 0, 255), 2)
|
||||
counter += 1
|
||||
|
||||
print(counter)
|
||||
|
||||
if counter == 27:
|
||||
print('Inventory full, time to drop')
|
||||
else:
|
||||
print('Inventory not full, keep fishing')
|
||||
|
||||
#Function to check if we are currently fishing
|
||||
def checkIfFishing():
|
||||
# Take a screenshot and store it in a numpy array
|
||||
screenshot = np.array(pag.screenshot(region = (0, 1079, 1920, 1080)))
|
||||
|
||||
screenshot = cv2.cvtColor(screenshot, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
# Load the image to be searched for in grayscale
|
||||
image_to_search = cv2.imread('Images/fishing.png', 0)
|
||||
|
||||
# Get the dimensions of the image to be searched for
|
||||
h, w = image_to_search.shape[::-1]
|
||||
|
||||
# Use cv2.matchTemplate() to find the template image within the screenshot
|
||||
#This checks if the green Fishing icon is being displayed in the top left
|
||||
result = cv2.matchTemplate(screenshot, image_to_search, cv2.TM_CCOEFF_NORMED)
|
||||
|
||||
# Set a threshold value to count only those template images that have a high enough correlation
|
||||
threshold = 0.8
|
||||
#Assume we are not fishing until proven otherwise
|
||||
Fishing = False
|
||||
|
||||
|
||||
loc = np.where(result >= threshold)
|
||||
for pt in zip(*loc[::-1]):
|
||||
cv2.rectangle(screenshot, pt, (pt[0] + w, pt[1] + h), (0, 0, 255), 2)
|
||||
Fishing = True
|
||||
|
||||
print(Fishing)
|
||||
|
||||
if Fishing:
|
||||
print('Currently Fishing')
|
||||
else:
|
||||
print('Not Fishing')
|
||||
|
||||
#Function for finding the fishing spots
|
||||
def fishingSpots():
|
||||
print('Searching for fishing spot')
|
||||
8
main.py
Normal file
@@ -0,0 +1,8 @@
|
||||
import pyautogui
|
||||
import random
|
||||
|
||||
###Try locating depending on color instead, doing specific images doesn't seem to work.
|
||||
|
||||
|
||||
|
||||
|
||||
13
mouseLocation.py
Normal file
@@ -0,0 +1,13 @@
|
||||
#! python3
|
||||
|
||||
#This displays the location of the mouse in a loop
|
||||
import pyautogui, sys
|
||||
print('Press Ctrl-C to quit.')
|
||||
try:
|
||||
while True:
|
||||
x, y = pyautogui.position()
|
||||
positionStr = 'X: ' + str(x).rjust(4) + ' Y: ' + str(y).rjust(4)
|
||||
print(positionStr, end='')
|
||||
print('\b' * len(positionStr), end='', flush=True)
|
||||
except KeyboardInterrupt:
|
||||
print('\n')
|
||||